

June 2024

Southlake Regional Health Centre 2024-2029 Energy Conservation and Demand Management Plan

Management sign-off

I confirm that Southlake Regional Health Centre's senior management has reviewed and approved this 2024-2029 Energy Conservation and Demand Management Plan.

pale

Signature:

Name: John Marshman

Date: June 30, 2024

Title: VP Capital Facilities and Business Development

Under Ontario Regulation 25/23, Ontario's broader public sector organizations are required to develop and publish an Energy Conservation and Demand Management (ECDM) Plan by July 1, 2024. Technical advice and analysis for this ECDM Plan were provided by <u>Enerlife Consulting Inc</u>.

For additional information regarding this document, please contact:

Brent Snoddon Director, Facility Operations Southlake Regional Health Centre 596 David Drive Newmarket, ON L3Y 2P9 905.895.4521 ext 2094 BSnoddon@Southlake.ca www.southlake.ca

Table of Contents

Man	agement sign-off	.2
Part	1: Introduction	.4
1.	About Southlake Regional Health Centre	.4
2.	Planning horizon and scope	.4
3.	Leadership in energy and emissions efficiency	.4
Part	2: Results from the past 5 years (2019-2023)	.5
1.	Energy and water performance progress	.5
2.	Measures implemented in 2019-2023	.6
3.	Project successes and lessons learned	.7
Part	3: The plan for the next 5 years (2024-2029)	.8
1.	2023 energy and water use	.8
2.	Benchmark positioning and targets	.9
3.	Energy efficiency measures1	1
4	Organization role and impact1	5

Part 1: Introduction

1. About Southlake Regional Health Centre

Southlake Regional Health Centre (SRHC) is a full-service hospital with a regional, clinically advanced focus. As a regionally designated site, SRHC is responsible for developing and providing advanced levels of care to people who reside in York Region, Simcoe County, and beyond. Combined with our commitment to provide the best possible care, our goal is to make SRHC synonymous with healthcare excellence.

We are committed to a sustainable future and have made significant efforts towards reducing the impact of our hospital on the environment, while ensuring occupant comfort and efficiently delivering high quality healthcare services to our community. Southlake RHC has undertaken projects aimed at lowering energy use and improving facility operations. Hospital facility staff work diligently to operate and maintain building systems as efficiently as possible with available resources.

Table 1 Southlake RHC site

Site	Address	Building Area (ft²)	Description
Southlake Regional Health Centre	596 Davis Drive Newmarket, ON L3Y 2P9	736,881	Acute care facility

2. Planning horizon and scope

The horizon for this plan is the 5-year period from 2024 to 2029, prioritizing projects and organizational improvements which are manageable within this period.

3. Leadership in energy and emissions efficiency

As outlined in the 2019 – 2023 Southlake Strategic Plan, the hospital is dedicated to providing the best sustainable infrastructure to support community health as follows:

Through new partnerships, a relentless focus on quality and sustainability, and a dedication to the best patient and provider experience, Southlake will improve the health of our communities and shape the future of healthcare.

To support this strategy, Southlake has outlined an energy conservation demand management plan to reduce energy and emissions, improve building conditions for occupants and make the best use of current infrastructure.

Part 2: Results from the past 5 years (2019-2023)

1. Energy and water performance progress

In the previous ECDM plan posted July 1, 2019, Southlake RHC defined a multi-year energy, management, financial and operational plan aimed at improving efficiencies and optimizing energy use. The 2019 plan focused on implementing smart improvements to meet the energy needs and obligations of SRHC and develop the pillars of energy management to guide good energy management practices. Table 2 presents the results showing actual, weather-normalized performance results from the 2023 calendar year as compared to the 2019 baseline, which resulted in net utility cost increase of \$319,922. The increases in utility consumption are attributed to the infrastructure and capital projects completed in the last 5-years.

	2019 Plan Target savings				Actual savings (2023 vs 2019 baseline) ¹				
	Units	%	\$	GHG (tonnes eCO ₂)					
Electricity (kWh)	50,554	0.2%	\$6,571	874	-2,587,556	-12.6%	-\$414,009	-78	
Natural Gas (m³)	171,384	4.1%	\$49,702	324,020	116,609	3.2%	\$38,481	223	
Total Energy (ekWh)	1,824,378	-	\$56,273	324,894	-1,380,651	-2.4%	-\$375,528	146	
Water (m³)	-	-	-	-	12,932	15.9%	\$55,606	2	
Total			\$56,273	324,894			-\$319,922	148	

Table 2 Energy and water savings vs 2019 baseline

¹ Using 2024 utility rates: Electricity \$0.16/kWh, gas \$0.33/m³, water \$4.30/m³.

2. Measures implemented in 2019-2023

Southlake Regional Health Centre was successfully able to implement the following projects outlined in the 2019 ECDM plan:

- Boiler controls
 - Upgraded controls on the new boiler in 2022.
- Automatic frequency drive upgrade
 - Addition of automatic frequence drives to 3 hospital chillers is ongoing and expected to be implemented Fall 2024.
- Interior lighting replacement
 - The lighting retrofit by switching to LED bulbs continues with some areas having been completed and some implementation completed by the maintenance team.
- Exterior lighting replacement
 - West Parking Garage lights were converted to LED in Spring 2024.

3. Project successes and lessons learned

There have been a number of successes over this period, along with lessons learned. Some of these include:

- 1. Early engagement of staff and stakeholders helps drive success.
- 2. Good headway is being made on thermal use with the installation of linkageless controls and steam pressure reduction projects, but more can be done.
- 3. With increased need for system resilience and adaptability, there is greater need to focus on air flows and pressurization when looking at proposed ventilation system alterations.

Part 3: The plan for the next 5 years (2024-2029)

Southlake RHC has the potential to make significant savings and is working towards top-quartile positioning in the Greening Health Care energy efficiency benchmark charts. The targeted energy use reduction is 21.5% by 2029 compared with the 2023 baseline. The projects and organizational measures described below are together designed to achieve this goal along with utility cost savings worth approximately \$945,516/year at 2024 rates and GHG emissions reduction of 1,872 tonnes $eCO_2/year$.

1. 2023 energy and water use

Table 3 below presents the 2023 baseline energy and water use, costs, and emissions for Southlake RHC.

Energy Type	2023 Use	2023 Costs (\$)	Greenhouse Gas Emissions (tonnes eCO ₂)		
Electricity	23,114,475 kWh	\$3,467,171	1,512		
Natural Gas	3,531,142 m ³ \$1,166,403		6,783		
Total Energy	59,661,798 ekWh	-	-		
Water	127,180 l/ft ²	\$572,311	2		
Total	-	\$5,205,885	8,296		

Table 3 Southlake RHC 2023 energy and water use

2. Benchmark positioning and targets

Greening Health Care sets good practice energy and water targets for its 69 member hospitals based on the average of top-quartile performance of comparable buildings in the Greening Health Care database and adjusted for weather and material site specific variables. Figure 4 shows the positioning of Southlake RHC in 2019, 2023 and at the 2029 performance level which is the goal for the Plan.

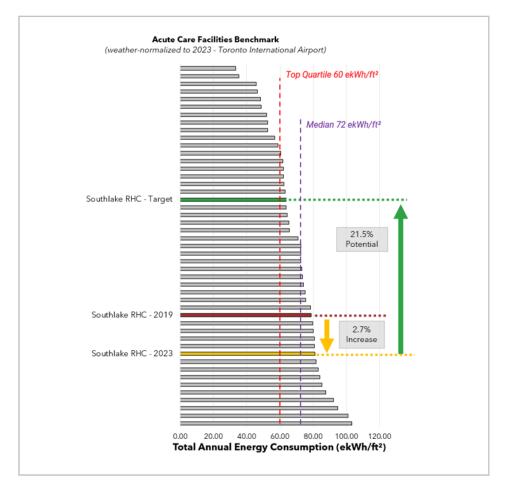


Figure 1 Southlake RHC energy benchmark for 2019, 2023, and 2029 target

Table 4 below presents Southlake RHC's actual and target energy intensities once the measures included in this Plan are implemented. Targeted savings are broken down by energy components, which help direct efforts to the building systems with the biggest opportunities:

- Base electricity systems are fans, pumps, equipment, and lighting that operate consistently throughout the year. The savings potential lies mostly in fans and pumps.
- Electric cooling systems that are weather dependent include air conditioning plant and equipment. These have significant further savings potential.

- Base thermal energy systems are primarily reheat in ventilation systems, along with domestic hot water and kitchens and heating distribution losses. The big savings potential is mostly in limiting simultaneous heating and cooling.
- Heating thermal systems (weather dependent) are space and ventilation heating and humidification, with some further targeted savings potential.

Energy Component		ge Intensity h/ft²)	Annual Savings Potential			
3 , 1	Actual	Target	%	\$		
Base Electricity	27.2	22.7	16.4%	\$525,765		
Electric Cooling	4.2	2.9	29.6%	\$145,215		
Base Thermal	35.3	25.0	29.0%	\$240,406		
Heating Thermal	14.4	12.9	10.1%	\$34,130		
Total Energy	81.0	63.6	21.5%	-		
Water (liters/ft ²)	172.6	172.6	0.0%	\$0		
Total	-	-	-	\$945,516		

Table 4 Southlake RHC's energy and water targets

3. Energy efficiency measure

Table 5 summarize the proposed energy and water efficiency measures for each site together with their estimated costs, savings, and payback. The measures are described in more detail in the following section.

Measures	Estimated Costs		Pote	Potential Savings		Incentives	Payback (with incentives)	GHG emissions reductions (tonnes eCO ₂ /year)	
Ventilation									
Install variable frequency drives and associated controls on select systems	\$270,000								
Schedule air handling units	\$137,500	\$790,750							
Canadian Standards Association's air change rates validation	\$78,750								
Testing and re-balancing	\$175,000		\$790,750 946,74	946,746 kWh	141,172 m³	\$198,066	\$129,968	3.3	333
Percentage of outdoor air control and optimization	\$52,500								
Enthalpy wheel optimization	\$24,500								
Optimize control sequence of operations	\$52,500								
Cancer Centre - Schedule air handling units	\$27,500								
Cancer Centre - Enthalpy wheel optimization	\$20,000	\$67,500	315,582 kWh	64,202 m³	\$71,680	\$47,609	0.3	144	
Cancer Centre - Optimize control sequence of operations	\$20,000								
Capital Measure - Replace steam coils	\$1,41	5,483	245,226 kWh	83,355 m³	\$66,743	\$45,361	20.5	176	
Building Automation and Lighting Controls									
System Upgrade/Expansion	\$250,000	\$250,000	189,349 kWh	38,521 m³	\$43,008	\$28,565	5.1	86	
Heating plant									

Table 5 Energy	and water	efficiency	projects	summarv
rubic o Energy	una mater	critoreney	projecto	ourninary

2024-2029 ECDM PLAN

SOUTHLAKE REGIONAL HEALTH CENTRE

Steam and boiler plant	\$29,000										
optimization Add new variable frequency drive											
on heating pumps	\$240,000										
Pump testing and upgrades	\$50,000	\$547,500		044.0003	0140 011			40.4			
Manually close isolation valves on air handling unit heating coils	\$37,500		\$547,500 392,362 kW	392,362 KWN	392,362 kWh 244,039 m ³ \$	\$143,311	\$100,246	3.1	494		
Reset water temp in summer and winter based on outside air temperature	\$80,000										
Isolate perimeter heating loops in summer months	\$111,000										
Cancer Centre - Isolate perimeter heating loops in summer months	\$111,000										
Cancer Centre - Add new variable frequency drive on heating pumps	\$90,000										
Cancer Centre - Manually close isolation valves on air handling unit heating coils	\$37,500	\$276,000	\$276,000	\$276,000	\$276,000	147,136 kWh	128,404 m³	\$65,915	\$46,815	3.5	256
Cancer Centre (CC) - Connect CC and main hospital heating lines	\$37,500		000 189,349 kWh	38,521 m³	\$43,008	\$28,565	13.3				
Heat recovery chiller	\$450,000										
Connect 24/7 loads on Main Hospital and Cancer Centre	\$150,000	\$600,000						86			
Cooling Plant											
Testing and balancing	\$20,000			0 m³	\$78,799	\$49,249	1.5				
Cooling plant upgrades and optimization	\$148,000	\$168,000	492,492 kWh					32			
Building Envelope											
Thermographic analysis	\$35,000	\$110,000	21,107 kWh	3.831 m³	\$4,641	\$3,068	23.0	9			
Air sealing, re-insulation	\$75,000	\$110,000	21,107 KWII	3,031111-	Ş4,04 I	Ş3,000	23.0	9			
Lighting											
Upgrade to LED	\$2,200,000		1,373,266 kWh	0 m³	\$219,723	\$622,176	7.2	90			
Total	\$6,425,233		4,312,615 kWh	742,045 m ³	\$934,893	\$1,101,622	5.7	1,707			
Total ECDM not including Capital and lighting	\$2,80	9,750	2,694,123 kWh	658,690 m³	\$648,427	\$434,085	3.7	1,441			

3.1 Ventilation system

- Install variable frequency drives (VFDs) and associated controls on select systems. Install new VFDs complete with static pressure sensor and connect to building automation system.
- Fine tune scheduling of air handling units (AHUs). Optimize AHU scheduling to align operating hours with departmental hours. For AHUs serving 24/7 zones, schedule variable air volume boxes in unoccupied zones to match space occupancy and adjust the AHU fan based on static pressure sensor feedback. Ensure AHU VFD speed aligns with expected unoccupied turn-down levels during off-hours.
- Test space air change rates to ensure compliance with Canadian Standards Association's (CSA) recommended levels. Reduce air change rates in areas where over-ventilation is identified.
- Test and rebalance air handling unit airflows, refurbishing ductwork and dampers as necessary to enhance system performance and resiliency.
- Percent outside air control and optimization: Test AHU outside air percentages, comparing them against CSA Z317.2 requirements. Then, adjust damper positions and/or balance return and supply air to ensure airflow aligns with CSA Z317.2 recommendations.
- Enthalpy wheel optimization
- Optimize control sequence of operations.
- Cancer Centre:

•

- Schedule air handling units: Optimize AHU scheduling to align operating hours with departmental hours. For AHUs serving 24/7 zones, schedule variable air volume boxes in unoccupied zones to match space occupancy and adjust the AHU fan based on static pressure sensor feedback. Ensure AHU VFD speed aligns with expected unoccupied turndown levels during off-hours.
- o Enthalpy wheel optimization
- Optimize control sequence of operations: Investigate economizer, supply air temperature, mixed air temperature control and implement new sequences to optimize operations.
- Capital Measure: Replace steam heating coils with low temperature glycol coils.
 Ventilation units pre-heating the steam coils limits thermal wheel operation resulting in under-utilized thermal wheels and increase facility gas consumption.
 Steam coils are reaching the end of their life, and they should be replaced with low temperature glycol coils, where practical. The glycol pre-heat coils setpoint can be lowered without the risk of freezing coils, unlike steam coils.

3.2 Building Automation System and Lighting Controls

• System upgrade/expansion. Retrofit control devices including actuators, control valves and sensors as needed to achieve savings.

3.3 Heating Plant

- Steam and boiler plant optimization. Review sequence of operations, test boilers and optimize sequence to reduce plant cycling.
- Add new VFD on heating pumps. Convert constant flow pumps variable flow, open triple duty throttling valves reducing overall system pressure drop and improving efficiency and reducing energy consumption.
- Pump testing and upgrades. Test pumps flow and head requirements, match with design and field test static pressure setpoints to reduce overall system pressure drops.
- Manually close isolation valves on AHU heating coils. Passing heating valves go unnoticed when the cooling plant is operational in summer which causes simultaneous heating and cooling, increasing both heating and cooling loads. Manually closing the AHU heating valve will ensure no heating is provided to the heating coils even in case the control valve passes.
- Reset water temperature in summer and winter based on outside air temperature.
- Isolate perimeter heating loops in summer months. Perimeter heating is required in the winter months to offset building envelope losses from walls, windows, and roof. Operating perimeter heating in summer months adds to the cooling load causing simultaneous heating and cooling of space. Isolating and turning off the perimeter heating loops in summer will avoid this situation and improve chiller plant capacity available as well reduce reheat load.
- Cancer Centre (refer to above section for measures description):
 - o Isolate perimeter heating loops in summer months.
 - Add new VFD on heating pumps.
 - Manually close isolation valves on AHU heating coils.
 - Connect heating to main hospital and heat recovery chiller.
- Heat recovery chiller. Install new heat recovery chiller and connect the facility's 24/7 cooling loads to the reclaim waste heat which is currently rejected to outside. The heat recovery chiller will reclaim the waste heat and produce hot water to heat the facility and lower natural gas use.
- Connect 24/7 loads from Main Hospital and Cancer Centre to the heat recovery chiller.
- 3.4 Cooling Plant
 - Testing and balancing

• Cooling plant upgrades and optimization

3.5 Cooling Plant

- Thermographic analysis. Technical review of the thermographic analysis of roof and exterior walls.
- Air sealing, re-insulation. Implement local air sealing and re-insulation, as needed.
- 3.6 Lighting
 - Upgrade to LED. Upgrade the existing fluorescent fixtures to energy-efficient LED fixtures and add lighting controls where possible. This includes installing occupancy sensors to automatically turn lights on or off based on room occupancy, implementing daylight sensors to adjust lighting levels based on the amount of natural light available, integrating dimming capabilities for adjustable lighting levels, and utilizing networked control systems for centralized management and automation of the lighting (where applicable).

4 Organization role and impact

SRHC has been enhancing energy management practices, tracking and reporting energy performance and improving energy monitoring and feedback. This plan primarily focuses on straightforward retrofits and operational improvements, making the most of current systems and avoiding overburdening staff.